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1.0 RESEARCH OBJECTIVE 

For many launch applications the use of liquid (non-cryogenic) fuel is desirable. Liquid 

fuels are much denser than hydrogen and easier to handle. These attributes are particularly 

advantageous for the first stage of a multiple-stage low-cost system, for instance, or for launch- 

on-demand applications. A major issue in the development of liquid-fueled rocket engines, as 

compared to engines using cryogenic fuels, is whether the combustor can be made free from 

combustion-generated pressure oscillations that could lead to catastrophic failure. 

The initiation and growth of these pressure oscillations, commonly referred to as 

combustion instabilities, are primarily determined by the design of the injector. A good injector 

design provides oscillation-free operation throughout the operating envelope and acceptable 

thrust efficiency. Historically, rocket engines fueled by liquid hydrocarbons have had thrust 

efficiencies on the order of three to five percent less than their hydrogen-fueled counterparts [1]; 

this is not because design strategies for efficient combustors are unknown, but rather because the 

design strategies that lead to very efficient combustion also tend to promote the occurrence of 

high-frequency combustion instability in liquid-fueled rocket engines. 

Instabilities can be classified according to whether they occur as bulk mode oscillations 

or in resonance with the chamber's acoustic modes, and by the mechanisms by which they are 

initiated and amplified [2]. Pressure oscillations which are due to fluctuations in the propellant 

flow rate are referred to as injection-coupled instabilities. Injection-coupled instabilities are 

amplified when the flow rate oscillations become coupled with either bulk- or acoustic-mode 

chamber pressure oscillations. Eliminating injection-coupled instabilities (chug instabilities) is 

accomplished by increasing the injection pressure drop (by reducing the injection flow area, or 

by increasing the propellant flowrate). Acoustic mode instabilities, which occur at a higher 

frequency than chug instabilities, can also be due to injection-coupling. Longitudinal-mode 

instabilities are usually injection-coupled, and are acoustic in nature with a pressure antinode at 

the injector face. Injection-coupled instabilities are well-modeled with conventional time lag 

models and are relatively easy to avoid or eliminate. 

More problematic than the injection-coupled instabilities are the instabilities that are 

intrinsically coupled to the combustion processes. These intrinsic instabilities typically occur 

when the energy release density in the combustor is increased; as the energy release density 

increases, higher modes of combustion instability occur.   To eliminate these instabilities, the 



injection pressure drop is reduced or the injector element orifice size is enlarged, both of which 

tend to decrease energy release density and combustion efficiency in a fixed volume combustor. 

This purposeful decrement of performance to achieve combustion stability is the reason that 

liquid-fueled rocket engines operate with a lower combustion efficiency than do hydrogen-fueled 

rocket engines. 

To develop effective design strategies for the elimination or control of combustion 

instabilities and to realize the benefits of liquid-fueled rocket engines, it is necessary to define 

the physical mechanisms that lead to the growth of these instabilities. Most of the work to date 

on combustion instability mechanisms has been based on the premise that intrinsic instabilities 

are controlled by vaporization. This premise is based explicitly on the proposition that 

vaporization is the rate-limiting step in spray combustion, and implicitly on the proposition that 

the sensitive time lag theory [3] holds for intrinsic-type instabilities. The role of atomization was 

dismissed largely on the basis that it occurred at a very high rate. 

The work carried out under this program presents evidence to support the hypothesis that 

the atomization process, especially that associated with impinging jet injectors, is the key factor 

in determining whether intrinsic instabilities will occur in liquid-fueled combustors. Previous 

work conducted in our laboratory under an earlier AFOSR grant emphasized measurements of a 

cold-flow spray formed by impinging jet injectors, which are commonly used with liquid 

fuels [4]. The measurements included atomization frequency and drop size distribution. 

The experimental results were compared with an empirical stability correlation used to predict 

the highest sustainable frequency of combustion instability in rocket engines that use impinging 

jet injectors to shed light on the physical basis of the correlation [5,6]. It was found that 

atomization is a periodic phenomenon that occurs on a time scale remarkably similar to typical 

combustion instabilities. Furthermore, the atomization frequency increases linearly with the 

ratio of injection velocity-to-orifice diameter (Uj/d0), as does the highest frequency of 

combustion instability predicted by the empirical correlation, which is essentially of the form 

finsAJVj ~ 0.1. As an increasing tendency toward combustion instability was predicted by the 

correlation, the measurements indicated that the average drop size and the polydispersity of the 

drop size distribution both decreased. 

Under the current program, experiments and analyses were conducted to further examine 

the connection between atomization and combustion instability. 



2.0 ANALYTICAL RESULTS 

The combustion response methodology is a standard approach for analyzing combustion 

stability [7]. In this analysis, the changes in combustion rate due to ambient oscillations are 

calculated and integrated to determine the amount of the heat release that occurs in phase with 

the pressure oscillation. A large positive value of combustion response indicates that a strong 

potential for a coupling between acoustic oscillations and heat release exists, and that 

combustion instability may occur. If vaporization is assumed to be the rate-limiting step in 

combustion, then the combustion response may be approximated by the vaporization response. 

The in-phase response factor, R, is defined as: 

_ JQ^P m'p'dt 

lodr°"(pfdt (1) 

where tdrop is the drop lifetime, m' is the unsteady component of the vaporization rate, and p' is 

the unsteady component of the ambient pressure. In the present implementation of the 

combustion response analysis, an open loop response is calculated. Theoretically, a value of R of 

at least (Y+l)/2y ~ 0.9 is required to drive a longitudinal instability for the case of concentrated 

combustion at the pressure antinode of a closed chamber, where y is the specific heat ratio of the 

gas [3]. In the present analysis, the Priem-Heidmann model is used to calculate the vaporization 

rate [8]. 

A standing acoustic wave in a two-dimensional chamber was considered in the analysis, 

thus the pressure oscillates in a sinusoidal fashion: 

p'<xcos(cot) (2\ 

The pressure oscillations are accompanied by out-of-phase transverse velocity oscillations: 

Vtrans x sin(w) ^ 

The maximum amplitude of the pressure oscillation was set at 0.1 times the mean chamber 

pressure. The order of the amplitude of the transverse velocity oscillation associated with a 

pressure oscillation of p' is (a/j)p'. This condition corresponds to a location in the chamber that 

is intermediate between a pressure antinode and a pressure node, where both oscillations in 

velocity and pressure are present. 

The combustion response analysis is a straightforward and mechanistic means of 

predicting combustion stability characteristics. Accurate accounting of the combustion processes 



is the main difficulty. Of all the component combustion processes, atomization is possibly the 

most difficult to model accurately. Most applications of the combustion response analysis 

greatly simplify the atomization process. Typically, an array of drops, all of the same size, is 

used to represent the actual distribution of drop sizes and velocities. The representative drop is 

"injected" continuously over one cycle of the pressure oscillation. These injection rates range 

from about 16 to 36 times per cycle [7,9]. Thus, the effects of unsteady atomization and drop 

size distribution are both precluded from the analysis. 

The simplified version of atomization used in prior applications of the combustion 

response model results in a misinterpretation of some of the dominating aspects of combustion 

instability. Measurements associated with impinging jet injectors have shown that the frequency 

of atomization and combustion instability are actually quite similar [5]. A phenomenological 

model of atomization for impinging jet injectors was developed earlier [10]. The highest 

atomization frequency predicted by this model is shown in Fig. 1, and compared to results from 

an empirical correlation that predicts the highest frequency of combustion instability that can be 

driven by a given impinging jet injector design, and which has the form fins4JUj -0.1. It is seen 

that the highest instability frequency is about ten times less than the highest atomization 

frequency.   Thus, in a combustion response model, it is incorrect to assume that atomization 
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Fig. 1. A comparison between the maximum atomization frequencies associated with 
impinging jet injectors and combustion instability, as predicted by a phenomenological 
atomization model and the empirical stability correlation, respectively. 



Table 1. Study Cases Used in Response Analysis of Heptane/Oxygen Combustion 

Case dJUj, High-frequency Atomization dw, dn, 

Number sxlO5 cutoff, s"1 frequency, s"1 Um urn 

1 2.59 3861 15,914 110 372 

2 3.43 2915 11,529 133 389 

3 4.10 2439 9391 154 455 

4 5.12 1953 7272 182 472 

5 9.98 1002 3365 383 576 

occurs continuously over a pressure oscillation cycle. This point will be shown to have a major 

impact on the magnitude of combustion response below. The fact that the atomization frequency 

is linearly dependent on the stability parameter, as is the highest sustainable frequency of 

combustion instability, suggests a strong coupling mechanism between unsteady atomization and 

combustion instability. 

The combustion response analysis used here considers heptane drops burning in an 

oxygen environment. The measured size distribution for a water spray formed by impinging jets 

was converted to a heptane spray size distribution by accounting for the property differences of 

ambient gas density, liquid density, and surface tension by using the following correlation [11]: 

dd-c0-16 V0-1 
(4) vPgy 

The ambient pressure chosen for the study was 1.72 MPa (250 psia), which is approximately the 

nominal design pressure of the combusting-flow tests that proceeded in parallel. The molecular 

weight of the products of heptane-oxygen combustion is 30 kg/kmole and the ambient gas 

temperature was chosen to be 3500 K. The resultant heptane drop size distribution is shown in 

Fig. 2. Table 1 provides a summary of the cases considered in the combustion response analysis 

at the conditions employed in the analysis, including the atomization frequency as calculated 

from an atomization model developed earlier [10]. 
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Fig. 2. The number distribution of heptane drops used in the combustion response 
analysis. The distribution was based on measured water spray and adjusted for property 
differences. 

The vaporization rates of the drops under non-oscillatory conditions are shown in Fig. 3. 

The rates are normalized by the initial mass of the drop, m0.   The smallest mean-size drops 
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Fig. 3. The normalized vaporization rate of a heptane drop. 



(Case 1, dn - 370 um) vaporize within 12 ms, whereas the largest drops (Case 5, d32 ~ 575 urn) 

take about 25 ms to vaporize. The drop undergoes a regime where the difference between its 

velocity and the ambient gas velocity is a minimum, and this regime is indicated most clearly by 

the local minima in the vaporization rate. This regime, which occurs at about three milliseconds 

for the smallest drop (Case 1) and at about six milliseconds for the largest drop (Case 5), is the 

regime which Priem and Guentert regarded as being most unstable because here the drops are 

most susceptible to transverse velocity oscillations associated with the unsteady flowfield [12]. 

Three different approaches were used to calculate vaporization response. The first 

approach is conventional and uses a mean drop size (d32) to represent the spray. The continuous 

atomization approximation is used. For the second approach, the distribution of heptane drops 

shown in Fig. 2 is injected continuously over the period of oscillation. For both approaches 

using continuous atomization, the time interval between each injection was 1/16 of the period of 

oscillation, which is the value recommended in the ROCCBD code [13]. Each of these 

approaches also uses the experimental data from Table 1 and Fig. 2 as input to the model. Since 

the drop size is dependent on the atomization frequency, it is difficult to decouple the effects of 

drop size and atomization frequency. Thus, the third approach is a parametric study of the 

effects of unsteady atomization on the combustion response of a single drop of a given size. 

Figure 4 shows the vaporization response of continuously atomized drops with a diameter 

equal to the Sauter mean diameter (d32) of the distribution. The frequency at which the peak 

response occurs is inversely proportional to drop size, and ranges from about 60 s"1 for the 

576 urn drop to about 110 s"1 for the 372 (im drop. The peak response is essentially independent 

of frequency, and is about 0.75. These results are consistent with many of the response 

calculations reported previously which indicated response magnitudes too low to drive an 

instability [7,9,14]. The frequencies corresponding to the predicted peak response magnitude are 

much lower than the high-frequency cutoff values indicated in Table 1. 

Figure 5 shows the vaporization response for the continuously atomized distribution of 

drops. The peak vaporization responses are attenuated by about 50% as compared to those of the 

continuously atomized mean drop sizes. For Case 1, the case with the smallest mean diameter 

and the least disperse distribution, the peak response is 0.32 and occurs at a frequency of about 

900 s"1. The peak response magnitude for Case 5, having the largest mean drop size and the most 

disperse distribution, is 0.31 at a frequency of about 100 s"1. The magnitude of the response is 
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Fig. 4.   Vaporization response magnitude of mean-sized drops as a function of ambient 
acoustic oscillation frequency. 
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Fig. 5. Vaporization response magnitude of heptane drops with the distribution shown in 
Fig. 2. Drops are added to the combustion zone continuously. 

insufficient to drive an instability for either the debased or the distribution-based method. 

The use of the drop size distribution rather than the mean drop size also has an effect on the 

width of the response. 

A comparison of the peak response frequencies predicted by the combustion response 

model with the high-frequency cutoff predicted by the empirical stability correlation (see 

Table 1) reveals that either application of the response analysis tends to underpredict the most 
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Fig. 6. Vaporization response magnitude as a function of pressure oscillation frequency 
and phase angle cp. Injection velocity was 20 m/s and ambient gas temperature was 3500 K. 
Atomization frequency was 10,000 s"1. 

amplified frequency. It is important to note that the empirical stability correlation does not 

necessarily predict the frequency with the highest growth rate; rather, it predicts the highest 

frequency of instability that is observed in practical combustors. 

Calculations were also done where the atomization frequency of Table 1 was used in 

conjunction with the drop size distribution of Fig. 2. This is a more realistic case than was 

considered in either of the prior two approaches. The calculated combustion response 

magnitudes for the unsteady atomization core were significantly larger than for the case of drop 

size distribution with continuous atomization. The combustion response magnitude was also 

dependent on the phase angle, <p, between the pressure oscillation and the onset of unsteady 

atomization. A parametric study of the effects of unsteady atomization was performed since the 

exact relationship between atomization and the pressure oscillations can only be assumed. Drops 

with diameters ranging from 10 jxm to 100 ixm and atomization frequencies ranging from 

5000 s" to 15,000 s"1 were varied independently to evaluate their effects on the response 

function. 

Representative results of the calculated response magnitude as a function of acoustic 

oscillation frequency and phase angle are shown in Fig. 6 for the 50 ixm drop size case. For this 

case, the atomization frequency was 10,000 s"1. For all the cases with unsteady atomization, the 
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peak response factor was significantly greater than one, even approaching a value of eight for the 

10 urn drop size case (not shown). Calculations indicated that the peak response magnitude 

decreased with increasing drop size. With increasing drop size, the peak response frequency was 

also reduced. These results indicate the potentially dominating effects of unsteady atomization 

on response magnitude, and thus the growth of the instability. The effects of phase angle are 

important as well. 

The effects of unsteady atomization and drop size on the calculated peak response 

magnitude are shown in Fig. 7. The phase angle, <j), was held constant for these calculations. 

A comparison with the peak response magnitude calculated using continuous atomization reveals 

that order-of-magnitude increases in response magnitude are possible with periodic atomization. 

Large response magnitudes are calculated for small drops (10 and 25 \im) at all values of 

atomization frequency. For the larger drop sizes, response magnitude generally increases with 

decreasing atomization frequency, although peak response values remain above the continuous 

atomization value. The effects of periodic atomization extend further into the large drop size 

region as the atomization frequency is decreased. 

10 



The effects of periodic atomization on the peak response frequency are considerably less 

significant, as shown in Fig. 8. Again, the calculated values of peak response frequency 

corresponding to continuous atomization are shown for comparison. Generally, the peak 

response frequency calculated with periodic atomization is consistent with the calculated peak 

response frequency for continuous atomization, although there were some peculiar cases where 

significant differences occurred. These cases require further study. 
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Fig. 8. Frequency at the peak response magnitude as a function of drop size and 
atomization frequency. The phase angle (|> is held constant. Injection velocity was 20 m/s 
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3.0 EXPERIMENTAL RESULTS 

Experiments were conducted to determine the conditions under which periodic 

atomization could cause longitudinal-mode combustion instabilities in a model rocket combustor 

using gaseous oxygen and liquid ethanol as propellants. The experimental setup was comprised 

of the model rocket combustor, an impinging jet injector, piezoelectric drivers, high frequency 

pressure transducers, and associated flow delivery and data acquisition equipment. Additional 

details of the experimental setup can be found in Anderson [15]. 

The chamber used in the combustion modulation tests is ten inches long, and has a two- 

by-two inch internal cross section, as shown in Fig. 9. The frequency of the fundamental 

longitudinal mode of the chamber was calculated to be 2200 s"\ based on gas properties 

calculated from a one-dimensional chemical equilibrium program. The combustor was 

instrumented with high-frequency pressure transducers (PCB model 113A20) at approximately 

0.5 inches (12.7 mm) downstream of the injection plane and at approximately 0.5 inches 

(12.7 mm) upstream of the nozzle throat. This allowed dynamic pressure measurements near the 

two pressure antinodes. The pressure transducers were calibrated in situ. The sensitivity of the 

transducer was 2.5 mV/psi. (0.363 uV/Pa). The signal from the high-frequency pressure 

transducers was sent to a data acquisition system (LeCroy model 6810) at a rate of 50,000 s"1, 

and stored on a personal computer for later analysis.   The raw high frequency pressure signal 
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Fig. 9. Schematic of the two-by-two inch cross-section Penn State uni-element rocket 
chamber. The 0.254 m (10 in) long chamber was modified to include the driven impinging 
jet injector system. Longitudinal combustion instabilities were driven by modulating the 
atomization rate of the impinging jets. 
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was also sent to a fast Fourier transform spectrum analyzer (Stanford Research Systems model 

SR760) for real-time analysis of the power spectral density (PSD) of the chamber pressure 

oscillations. The PSD was monitored during the tests to evaluate the performance of the 

electromechanical drivers, and to guide the driver configuration. 

An impinging jet injector was used, having an orifice diameter of 1.0 mm (0.040 in.) and 

an included impingement angle of 60°. The active injector element was based on technology 

developed by Dressier [16], with the basic design of the electromechanically-driven injector 

assembly shown in Fig. 10. The assembly, 0.152 m (6 in.) in length, is comprised of 

piezoelectric drivers and a nozzle holder. The driver consists of the piezoelectric transducers, a 

center bolt, and a piston. Fluid enters the top of the assembly and travels through the hollow 

center bolt to a fluid manifold, which is formed by the piston surface and an orifice plate. 

A voltage applied to the transducers causes the piezoelectric material to expand, and the piston is 

pushed toward the fixed orifice plate. As the voltage to the piezoelectric goes to zero, the center 

bolt provides the restoring force that draws the piston back to its original position. The voltage 

signals are provided to the injector system a Wavetek function generator, a Denon power 

amplifier, and matching transformers [16]. The function generator can supply any sort of signal 

form, including noise. 

^CNO  PUTE 

omncE puTC 
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Fig. 10. Electromechanically-driven injector assembly. 
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The electromechanical drivers were incorporated into the injector such that each of the 

two impinging jets could be driven independently. This allowed different perturbation 

frequencies to be imposed on the jets, as well as variation in phase angle between the signal to 

each jet. Figure 11 is an image of a water spray formed by the driven impinging jet injector at 

atmospheric conditions. The frequency placed on each jet enhances the periodic atomization 

associated with the impinging jets. 

The signals to the electromechanical drivers were established prior to starting the hot-fire 

test sequence, and left on throughout the test. The drivers were run either at the same frequency, 

or at different frequencies to produce a beat frequency. Drivers run at the same frequency were 

run either in-phase or out-of-phase with each other. In-phase driving yielded the highest 

pressure oscillation amplitude in the combustion tests. 

The flexibility of the experimental configuration allowed the test conditions to be 

changed rapidly. Over 50 variations of driving conditions/flow conditions were tested. 

The lowest driving frequency tested was 1800 s"1, and the highest driving frequency tested was 

8000 s"1. Chamber pressure and the oxidizer to fuel ratio (O/F) were held relatively constant for 

all tests, at about 1.448 MPa (210 psia) and 1.70, respectively. The chamber pressure was held 

constant for different flowrates by changing the nozzle diameter. 

The frequency of the first longitudinal frequency was calculated to be about 2200 s"1 for 

all conditions.   The stability parameter listed in Table 2 is the value of the dimensionless 

t  <■ 

'\äfoffl&JA 
Fig. 11. Image of spray formed by electromechanically-driven impinging injector. Jets are 
perturbed out-of-phase with each other at a driving frequency of 2500 s'1. The jet velocity 
is 5.2 m/s, impingement angle is 60 deg, and orifice diameter is 1.0 mm (0.04 in). 
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Table 2. Combustion Modulation Test Conditions. 

A B C D E 

mfuel,kg/s 0.019 0.025 0.031 0.056 0.070 

räfud ' lb«/s 0.041 0.055 0.068 0.124 0.155 

moxidizer' ^g/S 0.032 0.043 0.053 0.095 0.119 

moxidizer ' "WS 0070 0.094 0.116 0.210 0.263 

^coolant . kg/s 0.0068 0.0068 0.0068 0.016 0.016 

•^coolant' '"n/s 0.015 0.015 0.015 0.035 0.035 

O/F 1.70 1.71 1.71 1.69 1.69 

Pc, MPa 1.43 1.62 1.44 1.57 1.52 

Pc, psia 208 235 209 227 220 

Dthroat, mm 8.76 9.55 11.3 14.6 16.6 

Dthroat» in 0.345 0.376 0.443 0.575 0.652 

f,s-] 2200 2212 2208 2213 2212 

Vfuei, m/s 15 20 25 44 55 

p 0.147 0.110 0.089 0.051 0.0378 

parameter fdJUj, where/is the pressure oscillation frequency (the first longitudinal frequency in 

this case), d0 is the orifice diameter, and Uj is the fuel injection velocity. The empirical stability 

correlation indicated that the stability parameter must be less than about 0.1 for instability to 

occur. Thus, Cases C, D, and E would be capable of driving an instability at the frequency of the 

first longitudinal mode. Case E could nearly drive a third longitudinal frequency, and this was 

shown to be the case. 

A plot of the power spectral density (PSD) for Case E with no signal to the 

electromechanical drivers is shown in Fig. 12. Significant electronic noise was measured below 

600 s"1. Small peaks at about 1850 s'1, 3700 s"1, and 5200 s"1 were measured, corresponding to 

the first, second, and third longitudinal modes, respectively, and indicating a highly-damped 

chamber. It was found that driving the jets near the first longitudinal frequency did not produce 

significant levels of chamber pressure oscillations. This was primarily because of the low power 

output of the piezoelectric drivers at frequencies below about 4000 s"1. However, it was possible 

to drive significant first longitudinal pressure oscillations by causing a beat atomization 
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Frequency (Hz) 

Fig. 12. Power spectral density of pressure oscillations in 0.254 m (10 in) long chamber. 
Case E with no driving. Peaks corresponding to first (1850 s"1), second (3700 s1) and third 
(5200 s") longitudinal modes are shown. 

frequency near 1900 s"1, as shown in Fig. 13. In this case, a 7700 s"1 signal was sent to one of the 

jets, and a 5800 s"1 signal was sent to the other jet to produce the beat frequency of 1900 s"1. 

The highest levels of pressure oscillations were achieved with high flowrates and driving 

frequencies of about 5500 s"1, with an in-phase signal provided to the jets as shown in Fig. 14. 

In this case, both the first and the third longitudinal frequencies were driven. Chamber pressure 

time traces shown in Fig. 15 correspond to the plot of PSD shown in Fig. 14 (jets driven at 

5500 s" in-phase). The oscillating chamber pressure was measured by two PCB high frequency 

pressure transducers, one located just downstream of the injector and the other just upstream of 
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Fig. 13.   Power spectral density of pressure oscillations.   Case E in which   the jets are 
driven at 7700 s1 and 5800 s'1 to produce beat frequency of 1900 s"1. 

the nozzle. The length of the time slice shown is 0.005 s. As shown in Fig. 15, the amplitude of 

the pressure oscillations for the transducer just downstream of the injector is approximately 

0.138 MPa (20 psi) peak-to-peak, or ten percent of the chamber pressure.   For the case of no 

driving, the amplitude of the unorganized combustion noise (not shown) is about 13.8 kPa 

(two psi) peak-to-peak, or one percent of the chamber pressure. 
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Fig. 14.   Power spectral density of pressure oscillations.   Case E in which are driven at 
5500s1. 



Chamber Pressure Time Trace 
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Fig. 15. Time traces of chamber pressure measured by high-frequency pressure 
transducers located just downstream of the injector and just upstream of the nozzle. 
The pressure trace corresponds to the PSD shown in Fig. 14 (drivers in-phase at 5500 s"1). 
The sampling rate is 50,000 s1 and the length of the time slice shown is 0.05 s. 
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4.0 SUMMARY 

To evaluate potential mechanisms of combustion instability, an analysis of the open-loop 

response of spray combustion to ambient acoustic oscillations was performed. The vaporization 

of heptane drops in an oxygen environment was considered. Combustion was assumed to occur 

immediately after vaporization. Experimental results provided a definition of the spray (drop 

size distribution, mean drop size, atomization frequency) for use as initial conditions. 

When atomization occurred continuously, the results of the response analysis indicated 

that a wider distribution of drops reduced the response magnitude. A monodisperse size 

distribution gave the highest response magnitude. However, the response magnitudes for both 

cases were still lower than the theoretical limit necessary to drive an instability, which is 

consistent with most previously published results. Calculated peak response frequencies were 

considerably lower than the highest instability frequency predicted by an empirical stability 

correlation that has been proven to be accurate for combustors that use impinging jet injectors. 

The major effect of including temporally-dependent atomization was a large increase in 

response magnitude. The response magnitude for the cases studied was far above the theoretical 

limit for driving an instability, and represented as much as an order of magnitude increase over 

the response magnitude for the continuous atomization case. Generally, the inclusion of 

temporally-dependent atomization did not have a major effect on the peak response frequency. 

It was shown that periodic atomization can cause large variations in the response 

magnitude at acoustic oscillation frequencies as low as 0.1 times the atomization frequency. 

The increase in response magnitude was largest for small drops. The practice of using arbitrary 

spacing between drop injection (continuous injection or continuous atomization) yields response 

magnitudes that are significantly lower than are obtained with realistic atomization frequencies. 

Although there is evidence that oscillating ambient flowfields can significantly modify the 

atomization process, the precise mechanism through which coupling occurs is unknown. 

The analyses presented here indicated that the phase shift associated with the coupling process 

has an influence on both the peak response frequency and the peak response magnitude. Future 

work should examine the phase relationship between ambient pressure oscillations and 

atomization frequency. 

The experimental results provide further evidence that atomization is a key mechanism in 

driving combustion instabilities.   Pressure oscillations at frequencies corresponding to the first 
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through third longitudinal modes were driven in a model combustor using electromechanically- 

driven impinging jets. The ability to drive these very high-frequency pressure oscillations is 

consistent with the results from an empirical stability correlation. This experimental approach 

also allows, for the first time, quantitative measurements of the fundamental spray parameters 

that control the onset of instability. 

A theory for a mechanism of combustion instability that is consistent with the results of 

the analytical and experimental studies presented above and the empirical stability correlation 

can be provided. A reduction in the value of the stability parameter (dJUj), indicating an 

increased tendency toward instability, implies a reduction in drop size and a reduction in the 

polydispersity of the spray distribution. According to the analysis presented above, however, 

these effects alone provide only a marginal response magnitude. An additional effect caused by 

a reduction in the value of the stability parameter is an increase in the atomization frequency. 

The large variations in response magnitude (which can be well above the theoretical limit for 

driving an instability) at acoustic oscillation frequencies near the atomization frequency (fosc ~ 

0-1 fatom) result in a large deposition of energy in a frequency-coupled resonant mode. As the 

stability parameter decreases, the atomization frequency increases, as does the frequency of the 

most energized chamber mode. The net result is an increase in the frequency range of 

combustion instabilities that can be driven, as indicated by the empirical stability correlation. 
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